

FLUID MECHANICS (BTME 301-18)

Unit 5: Dimensional Analysis And Similitude

Introduction. DIMENSIONS AND UNITS

- A dimension is a measure of a physical quantity (without numerical values), while a unit is a way to assign a number to that dimension. For example, length is a dimension that is measured in units such as microns (μm), feet (ft), centimeters (cm), meters (m), kilometers (km), etc.
- There are seven primary dimensions (also called fundamental or basic dimensions)—mass, length, time, temperature, electric current, amount of light, and amount of matter.
- All nonprimary dimensions can be formed by some combination of the seven primary dimensions.
- For example, force has the same dimensions as mass times acceleration (by Newton's second law). Thus, in terms of primary dimensions,

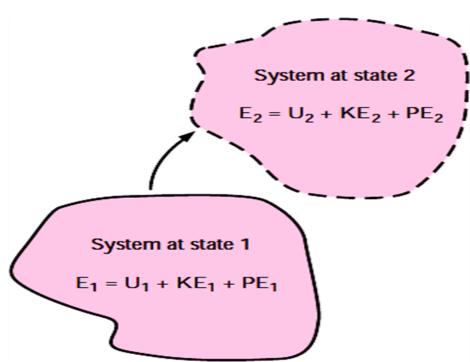
Dimensions of force:
$$\{Force\} = \left\{Mass \frac{Length}{Time^2}\right\} = \{mL/t^2\}$$

Primary dimensions and their associated primary SI and English units

Dimension	Symbol*	SI Unit	English Unit
Mass	m	kg (kilogram)	lbm (pound-mass)
Length	L	m (meter)	ft (foot)
Time [†]	t	s (second)	s (second)
Temperature	T	K (kelvin)	R (rankine)
Electric current	I	A (ampere)	A (ampere)
Amount of light	С	cd (candela)	cd (candela)
Amount of matter	N	mol (mole)	mol (mole)

• Surface tension (σ_s), has dimensions of force per unit length. The dimensions of surface tension in terms of primary dimensions is

Dimensions of surface tension:
$$\{\sigma_s\} = \left\{\frac{\text{Force}}{\text{Length}}\right\} = \left\{\frac{\text{m} \cdot \text{L/t}^2}{\text{L}}\right\} = \{\text{m/t}^2\}$$



DIMENSIONAL HOMOGENEITY

- Law of dimensional homogeneity: Every additive term in an equation must have the same dimensions.
- Consider, for example, the change in total energy of a simple compressible closed system from one state and/or time (1) to another (2), as shown in the figure
- The change in total energy of the system (ΔE) is given by

$$\Delta E = \Delta U + \Delta KE + \Delta PE$$

• where E has three components: internal energy (U), kinetic energy (KE), and potential energy (PE).

DIMENSIONAL HOMOGENEITY

• These components can be written in terms of the system mass (m); measurable quantities and thermodynamic properties at each of the two states, such as speed (V), elevation (z), and specific internal energy (u); and the known gravitational acceleration constant (g),

$$\Delta U = m(u_2 - u_1)$$
 $\Delta KE = \frac{1}{2}m(V_2^2 - V_1^2)$ $\Delta PE = mg(z_2 - z_1)$

 It is straightforward to verify that the left side of the change in Energy equation and all three additive terms on the right side have the same dimensions—energy.

$$\{\Delta E\} = \{Energy\} = \{Force \cdot Length\} \rightarrow \{\Delta E\} = \{mL^2/t^2\}$$

$$\{\Delta U\} = \left\{Mass \frac{Energy}{Mass}\right\} = \{Energy\} \rightarrow \{\Delta U\} = \{mL^2/t^2\}$$

$$\{\Delta KE\} = \left\{ Mass \frac{Length^2}{Time^2} \right\} \qquad \qquad \{\Delta KE\} = \{mL^2/t^2\}$$

$$\{\Delta PE\} = \left\{ Mass \frac{Length}{Time^2} Length \right\} \qquad \rightarrow \qquad \{\Delta PE\} = \{mL^2/t^2\}$$

- In addition to dimensional homogeneity, calculations are valid only when the units are also homogeneous in each additive term.
- For example, units of energy in the above terms may be J, N⋅m, or kg⋅m²/s², all of which are equivalent.
- Suppose, however, that kJ were used in place of J for one of the terms. This term would be off by a factor of 1000 compared to the other terms.
- It is wise to write out all units when performing mathematical calculations in order to avoid such errors.

Some common established nondimensional parameters or Π 's encountered in fluid mechanics and heat transfer*

Name	Definition	Ratio of Significance
Archimedes number	$Ar = \frac{\rho_s g L^3}{\mu^2} (\rho_s - \rho)$	Gravitational force Viscous force
Aspect ratio	$AR = \frac{L}{W} \text{ or } \frac{L}{D}$	Length or Length Diameter
Biot number	$\mathbf{Bi} = \frac{hL}{k}$	Surface thermal resistance Internal thermal resistance
Bond number	$\mathbf{Bo} = \frac{\mathbf{g}(\rho_f - \rho_v)L^2}{\sigma_s}$	Gravitational force Surface tension force
Cavitation number	Ca (sometimes σ_c) = $\frac{P - P_v}{\rho V^2}$	Pressure — Vapor pressure Inertial pressure
	$\left(\text{sometimes } \frac{2(P-P_v)}{\rho V^2}\right)$	
Darcy friction factor	$f = \frac{8\tau_w}{\rho V^2}$	Wall friction force Inertial force

Some common established nondimensional parameters or Π 's encountered in fluid mechanics and heat transfer*

Name	Definition	Ratio of Significance
Archimedes number	$Ar = \frac{\rho_s g L^3}{\mu^2} (\rho_s - \rho)$	Gravitational force Viscous force
Aspect ratio	$AR = \frac{L}{W} \text{ or } \frac{L}{D}$	Length Width or Length Diameter
Biot number	$\mathbf{Bi} = \frac{hL}{k}$	Surface thermal resistance Internal thermal resistance
Bond number	$Bo = \frac{g(\rho_f - \rho_v)L^2}{\sigma_s}$	Gravitational force Surface tension force
Cavitation number	Ca (sometimes σ_c) = $\frac{P - P_v}{\rho V^2}$	Pressure — Vapor pressure Inertial pressure
	$\left(\text{sometimes } \frac{2(P-P_{\nu})}{\rho V^2}\right)$	
Darcy friction factor	$f = \frac{8\tau_w}{\rho V^2}$	Wall friction force Inertial force

Drag coefficient	$C_D = \frac{F_D}{\frac{1}{2}\rho V^2 A}$	Drag force Dynamic force
Eckert number	$Ec = \frac{V^2}{c_p T}$	Kinetic energy Enthalpy
Euler number	$Eu = \frac{\Delta P}{\rho V^2} \left(\text{sometimes } \frac{\Delta P}{\frac{1}{2}\rho V^2} \right)$	Pressure difference Dynamic pressure
Fanning friction factor	$C_f = rac{2 au_w}{ ho V^2}$	Wall friction force Inertial force
Fourier number	Fo (sometimes τ) = $\frac{\alpha t}{L^2}$	Physical time Thermal diffusion time
Froude number	$Fr = \frac{V}{\sqrt{gL}} \left(\text{sometimes } \frac{V^2}{gL} \right)$	Inertial force Gravitational force
Grashof number	$Gr = \frac{g\beta \Delta TL^3 \rho^2}{\mu^2}$	Buoyancy force Viscous force
Jakob number	$ extsf{Ja} = rac{c_p(T-T_{ extsf{sat}})}{h_{fg}}$	Sensible energy Latent energy
Knudsen number	$Kn = \frac{\lambda}{L}$	Mean free path length Characteristic length

Lewis number	$Le = \frac{k}{\rho c_p D_{AB}} = \frac{\alpha}{D_{AB}}$	Thermal diffusion Species diffusion
Lift coefficient	$C_L = \frac{F_L}{\frac{1}{2}\rho V^2 A}$	Lift force Dynamic force
Mach number	Ma (sometimes M) = $\frac{V}{c}$	Flow speed Speed of sound
Nusselt number	$Nu = \frac{Lh}{k}$	Convection heat transfer Conduction heat transfer
Peclet number	$Pe = \frac{\rho LVc_p}{k} = \frac{LV}{\alpha}$	Bulk heat transfer Conduction heat transfer
Power number	$N_p = \frac{\dot{W}}{\rho D^5 \omega^3}$	Power Rotational inertia
Prandtl number	$\Pr = \frac{\nu}{\alpha} = \frac{\mu c_p}{k}$	Viscous diffusion Thermal diffusion
Pressure coefficient	$C_p = \frac{P - P_{\infty}}{\frac{1}{2}\rho V^2}$	Static pressure difference Dynamic pressure
Rayleigh number	$Ra = \frac{g\beta \Delta T L^3 \rho^2 c_p}{k\mu}$	Buoyancy force Viscous force

Reynolds number	$Re = \frac{\rho VL}{\mu} = \frac{VL}{\nu}$	Inertial force Viscous force
Richardson number	$Ri = \frac{L^5 g \Delta \rho}{\rho \dot{V}^2}$	Buoyancy force Inertial force
Schmidt number	$Sc = \frac{\mu}{\rho D_{AB}} = \frac{\nu}{D_{AB}}$	Viscous diffusion Species diffusion
Sherwood number	$Sh = \frac{VL}{D_{AB}}$	Overall mass diffusion Species diffusion
Specific heat ratio	$k \text{ (sometimes } \gamma) = \frac{c_p}{c_V}$	Enthalpy Internal energy
Stanton number	$St = \frac{h}{\rho c_p V}$	Heat transfer Thermal capacity
Stokes number	Stk (sometimes St) = $\frac{\rho_p D_p^2 V}{18\mu L}$	Particle relaxation time Characteristic flow time
Strouhal number	St (sometimes S or Sr) = $\frac{fL}{V}$	Characteristic flow time Period of oscillation
Weber number	$We = \frac{\rho V^2 L}{}$	Inertial force